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Momentum disturbances and wave trains 

By A. DIXONf 
University of New South Wales, Kensington, N.S.W., 2033, Australia 

(Received 12 January 1988 and in revised form 23 March 1989) 

The effects of a reduction in momentum flux on the downstream flow characteristics 
of a steady, two-dimensional flow are investigated. In particular, quantities such as 
the changes in mean depth, mean fluid velocity, mean kinetic and potential energies 
and the length of the induced downstream wave are examined. This is done with the 
use of a fourth-order perturbation expansion in wave slope. The results are compared 
with the conflicting results that had been obtained previously by different authors. 
Agreement is found with the second-order theory of Benjamin (1970), but the work 
of Doctors & Dagan (1980) is found to be in error and is corrected. 

1. Introduction 
The basic concern of this paper is the effect of a stationary disturbance on the 

behaviour of a two-dimensional free-surface flow far downstream. The disturbance is 
one whereby the momentum of the fluid is changed but energy is conserved, as by a 
pressure patch on the surface, bottom topography or an obstacle within the fluid. 
This can cause a downstream wave system, which is portrayed in figure 1. The study 
of the properties of this wave system has had a long history but comparatively little 
has been said concerning the changes in quantities such as mean depth and mean 
fluid velocity of the downstream flow and wavenumber of the induced waves due to 
changes in disturbance strength. 

Consider an open horizontal channel containing an incompressible, inviscid fluid of 
depth D, flowing irrotationally to the left with velocity U. A stationary wave system 
will be formed downstream from a steady disturbance if U is not too large. It is well 
known that a stationary wave train can be uniquely defined by Q, the volume flow 
rate per unit span, R, the energy per unit mass (Bernoulli's constant), and S, the 
momentum flow rate per unit span, corrected for changes in horizontal pressure 
force. By conservation of mass, Q is constant throughout the regions of study, and 
provided the disturbance is frictionless and the fluid irrotational R will also be 
constant. Thus the disturbance is equivalent to a change in the momentum flux 
alone. For the purpose of this paper the disturbance strength is defined as the 
reduction in the momentum flow rate per unit span from its upstream value i.e. 
So-S, where So is the momentum flow rate upstream of the disturbance and S is its 
value downstream. So-S is also equal to the wave resistance of the disturbance. 

The case when the depth is small in comparison with wavelength was investigated 
by Benjamin & Lighthill (1954). The authors used shallow-water theory, expressed in 
terms of Q, R and S alone, to give the allowable regions ofR and S for a wave solution 
to exist. For given Q and R corresponding to a uniform subcritical flow upstream, it 
was found that as the disturbance strength So-S is increased the amplitude of 

t Present address: School of Engineering, University of Exeter, North Park Rd., Exeter 
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FIQURE 1 .  Disturbance causing changes in the flow parameters. 

the waves increases and eventually, as the maximum possible value of So-S is 
approached, the wavelength diverges to infinity, leaving a uniform supercritical flow 
downstream. 

The study of the flow when the depth is not shallow has not been as straight- 
forward. In  a paper %on upstream influence, Benjamin (1970) determined a second- 
order expression for the change in depth between the region far upstream and the 
region of the stationary wavetrain. This is 

r* (kkH)2 (1  + kD cosech (2kD)) 
kh = ( 1 . 1 )  2kD(1 -F2) 

where is the change in mean depth, k is the wavenumber and H is the crest-to- 
trough height of the downstream wave. F is defined as U/(gD)a, where g is the 
gravitational acceleration. This mean drop in surface height was confirmed 
experimentally by Salvesen & von Kerczek (1978). 

Doctors & Dagan (1980) investigated the effect that  a surface pressure disturbance 
has on the flow far downstream from the disturbance. A perturbation expansion was 
developed and expressions for the velocity potential and surface height far 
downstream were calculated to third order. These solutions gave no change in the 
mean fluid velocity between upstream and downstream flow, but a drop in the mean 
surface height was given, to second order in waveheight, by 

kh = ( ! $ C H ) ~ / ~  sinh (2kD). (1.2) 

This is clearly not in agreement with (1 .1) .  
De (1955) devised a method to define the properties of a wave system in terms of 

R and S, using a fifth-order Stokes-type expansion. For a given R and S the values 
of kH and lek were found, where h is the mean depth in the region of the wavetrain. 
It is important to note that this method does not give complete information about 
the wave system as the wavenumber itself is a function of waveheight and mean 
depth. Thus the quantities k, H and 5 cannot be found individually and the paper 
does not relate the downstream mean depth to that of the upstream depth. It was 
also claimed by Chappelear (1961) and confirmed later by Fenton (1985) that the 
higher-order results of De are incorrect. 
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Salvesen (1969) showed that for the case of infinite depth the length of the 
downstream waves is given by the equation 

which is in contrast to the shallow-water results, as here the wavelength decreases 
with disturbance strength. The wavelength dependence was further investigated in 
a later paper (Salvesen & von Kerczek 1978), where Benjamin’s second-order results 
for the change in the downstream mean depth were combined with De’s perturbation 
results for free waves. This gave a method to calculate the wavelength for a given 
waveheight and Froude number. For Froude numbers less than 0.73 the wavelength 
was found to decrease with waveheight, but to increase with waveheight when the 
Froude number was larger. These results should be viewed with caution, however, as 
Benjamin’s results have been brought into question and De’s results are incorrect a t  
high orders. 

As can be seen, much of the work on this topic when the depth is not small is either 
incomplete, in conflict, or has been shown to be incorrect a t  high orders. The 
motivation for the present paper was ( a )  to develop a high-order method which 
would simultaneously investigate all the above effects and hence check validity of 
these various theories ; ( b )  to use these higher-order corrections as an error estimate 
for the lower-order results; (c)  to evaluate the integral quantities for changes in mean 
kinetic energy and mean potential energy caused by the disturbance, taking into 
account these changes in mean depth and wavelength. Previous papers, e.g. Cokelet 
(1977), estimated these energy changes for an increasing waveheight but with fixed 
wavelength. This caused R to vary with waveheight. 

2. Perturbation method 
Consider the flow portrayed in figure 1. At some point in the flow there is a 

disturbance causing a momentum loss to the fluid. If the flow is subcritical then 
waves will be induced downstream. The flow can be considered to have two distinct 
regions separated by the disturbance. The first is the steady uniform flow far enough 
upstream for the local effects of the disturbance to be ignored and the second, the 
wave system with reduced momentum flux, is far enough downstream for the local 
effects of the disturbance to be again ignored.? The steady and uniform upstream 
flow is fully determined by depth D and velocity U,  or equivalently by U and 
F = U/(gD)i. Thus Q ,  R and S for the upstream flow are given by 

and 

Assuming that the downstream flow is also steady with Q = Q, and R = R, 
everywhere, solving for the downstream flow is reduced to finding a wave system 
with Q = Q,, R = R, and S = S,-AS, A S  being the disturbance strength. The 

t As pointed out by Benjamin (1970) the flow in this upstream region differs from the flow prior 
to the formation of the disturbance, having a different depth and velocity. The present upstream 
flow was established after upstream effects, caused by the initialization of the disturbance, had 
advanced sufficiently far ahead. 
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amplitude and other properties of the downstream periodic wave system can then be 
calculated as functions of A S  > 0, parameterized by F < 1. 

The advantage of this approach, whereby the values of conserved quantities from 
either side of the disturbance are matched, is that  the equations of motion do not 
have to be solved in the region of the disturbance, often a somewhat daunting task. 
The following results are independent of the detailed structure of the flow field near 
the disturbance, in that only knowledge of the reduction in S due to the disturbance 
is necessary. 

In  this section a fourth-order perturbation expansion is derived for the downstream 
flow, such that the Bernoulli constant for this wave system is the same as that of the 
upstream flow. In  $3  the volume flux for this wave system is found and equated to 
that of the flow ahead of the disturbance. This gives a single nonlinear algebraic 
equation to solve as the matching condition. From this, the physically possible wave 
system can be selected. 

The axes are defined such that positive x is horizontal and upstream while y is 
vertically upwards, with the bed at y = -d.  The surface is defined a t  y = q(x), with 
~ ( x )  reducing to  zero with disturbance strength. The length d is not known a priori 
and is essentially a mathematical convenience, but must be D to zeroth order. This 
dual notation may seem confusing but is needed as the two regions are examined 
separately at  first. By varying d the mean downstream depth is also varied. The 
value of d is then selected such that the volume flux downstream is Q,,. 

The flow can be described by the use of a velocity potential, #(x, y), such that 

horizontal velocity , u ( x ,  y) = $,(x,Y)--c, (2 . la)  

vertical velocity, v(x, Y) = $y(x, Y), (2.1b) 

where C is the mean downstream fluid velocity so far downstream that $, contains 
only terms which have a zero mean over one wavelength. Incompressibility implies 
that 

and if pressure is defined as being zero a t  the surface then 

(2.2) 

+(q5,-C)’++i+gy = R a t  y = q(x) ,  (2.3) 

($ , -C)%-&/  = 0 a t  Y = q(x) ,  (2.4) 

and $ y = O  a t  y = - d .  (2.5) 

VZ$ = 0, 

from Bernoulli’s theorem. The dynamic boundary conditions give 

These equations are nonlinear and thus difficult, to  solve for the downstream case 
owing to the presence of the wave system. Using perturbation methods they can be 
approximated by a set of simultaneous linear equations. 

Define 
q5 = +E2q52 + E 3 g 5 3  + E4$i54 + € 5 9 4  + . . . , 
q = €71 + 2 q 2  + E 3 q 3  + €47, + “5T5 + . . ., 

c = co + EC1 + E2C2 + E3C3 + E4C4 + E5C5 + . . . , 

( 2 . 6 ~ )  

(2.6b) 

and ( 2 . 6 ~ )  

were E is related to the size of the disturbance. 
Note that R is not expanded, unlike in De’s formulation. The solution to this 

system is then the family of waves with the same Bernoulli constant. The above 
expansions can be substituted into (2.3) and (2.4). Since (2.3) and (2.4) are evaluated 
a t  the surface, the actual values needed are $iz(x,q) and $iu(x,7). These can be 
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obtained to the same order of approximation by expanding in y about y = 0. All this 
was done with the use of MACSYMA, a computer algebraic manipulation package 
which can perform symbolic substitution, differentiation, etc. Upon the collection of 
terms of like order in e ,  sets of linear equations were obtained as the boundary 
conditions. Owing to their length these are not published here but may be obtained 
from the author. 

The equations for the Bernoulli condition are of the form 

$ci = R  for i = O  (2.7) 

(2.8) and #tz-- T i S  - -fi(x)+ct a t  y = 0 for i > 0. 
CO 

The surface kinematic conditons are of the form 

qi , (x)  g 

CO 
+ k , $ , y  = g i ( x )  a t  y = 0 for i > 0. 

fi and gt are functions of lower-order terms and 

9 k =-. 
ci 

0 

In the linear approximation, ko is equivalent 
For i > 0, (2.8) and (2.9) combine to  give 

$tzz + ko #tu = ftzW + gc(4  

(2.10) 

to the infinite-depth wavenumber. 

a t  y = 0. (2.11) 

The linear solution to the problem is then of the form 

Ua, cosh ( k ( y + D ) )  sin ( k x )  
sinh (kd)  , ( 2 . 1 2 ~ )  $ l ( X > Y )  = 

T,(Z, y) = a,  cos ( k x )  (2.12b) 

and c = u, (2.12c) 

(2.13) 

a, is half the linear waveheight. This is simply a wave superimposed on the 
undisturbed steady stream. Note that the mean depth and fluid velocity are 
unchanged downstream at this order. 

With the use of extensive programming in MACSYMA, expansions of higher orders 
were then evaluated for $(z, y), ~ ( x )  and C, by substitution of the lower-order terms 
back into (2.11) to obtain #i (x ,  y )  and then (2.9) was evaluated to obtain ya(x). The 
values for the term ci were found by the restriction that the term #i+l(x, y) must be 
bounded. Hence the right-hand side of (2.11), at this order, cannot contain a 
harmonic term with wavenumber k as otherwise the solution for # i + l ( x , y )  would 
contain a resonant term. In this manner a set of fourth-order solutions was obtained 
for the above quantities. 

gd 1 where k satisfies kd coth (kd )  = - = -. 
ci F2 

The wave slope kH can then be found from 

kH = k(T(0)  - T W k ) ) .  (2.14) 

This expression was used to  express the fourth-order solution in terms of +kH rather 
than a,. 
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ikH Bernoulli kinematic ikH Bernoulli kinematic 

kd = 1.4658, kx = 1.2454 kd = 2.12, kx = 0.45 
0.157 0.1 1 

0.11 0.076 

0.076 0.049 

0.049 0.029 

0.029 0.01 7 

0.017 0.0077 

0.0077 0.0027 

0.0027 

5.27 4.42 0.93 5.06 

5.18 4.81 4.00 5.04 

5.11 4.92 4.59 5.03 

5.07 4.98 4.80 5.02 

5.02 4.99 4.91 5.01 

5.01 5.00 4.96 5.00 

5.07 5.00 

TABLE 1 .  Exponents of error for surface boundary conditions 

These solutions for $(x, y), ~ ( x )  and C were checked by substitution back into the 
original boundary conditions, (2.3) and (2.4). For a given i k H ,  kd and kx a value for 
surface height k ~ ( x )  can be determined. Thus $x(x, 7) and $,(x, 7) can be found and 
used to evaluate (2.3) and (2.4). The error in both equations can then be determined 
for various values of +kH, A MACSYMA program was written to perform these analytic 
and numeric operations successively. It was assumed that the error was of the form 
(ikH)’, with j being found from neighbouring values of +kH and their corresponding 
errors. The resulting values f o r j  can be found in table 1.  It can be seen that as +kH 
reduced to zero, the error behaves as (4kH)5.  This will only occur if the solutions are 
correct to fourth order. 

3. Derivation of integral quantities and formulae for changes in flow 
parameters 

are possible for the volume flux 
Now that #(x, y), ~ ( x )  and C are known to fourth order, similar order expressions 

(3.1) Q = rd 4 2 ,  Y )  dy, 

for the horizontal momentum flux, corrected for pressure and divided by density, 

where the term p I p  can be found from Bernoulli’s equation; and for the mean 
potential and kinetic energy, divided by density and averaged over one wavelength, 

and (3.4) 
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respectively. The vertical domain of integration for all these quantities is from the 
bed t o  the surface of the flow y = 7, where li, = ( D - d )  far upstream. 

These integrals were evaluated for the downstream case using the solutions for #(x, 
y), ~ ( z )  and C from $ 2 .  As ~ ( x )  is 'small', any function with it as an argument after 
integration was expanded to the correct order. In this manner, fourth-order solutions 
for these integral quantities were obtained in terms of co, kd and &kH. The far 
downstream expressions for Q and S passed the stringent test of being independent 
of x, which is expected as there is no external source of fluid or forcing term. 

These downstream solutions were non-dimensionalized so that 

&/cod = i ($kH,  kd) ,  S/cid = s"(&kH, k d ) ,  (3 .5a,  b)  

V / c i d  = v^($kH, kd ) ,  and T / c i d  = t"($kH, kd ) ,  ( 3 . W  d )  

where i ,  s", G and t" can be found in Appendix A. 

volume flux, one obtains using (2 .7)  
Equating the values for the upstream and downstream Bernoulli constant and 

and $($kH,kd)(F2+2)fkdcoth(kd)+P(1+2kd~oth(kd))~ = 0, (3 .7)  

from (3 .1) ,  (3 .5) ,  (3.6) and (2.13).  By solving (3.7) for a given wave slope, one obtains 
the value of kd for which the volume flux is consistent between the two regions. 
Hence all the above terms can then be evaluated for a given wave slope. It should 
be stressed that the term kd has no simple physical meaning but is a mathematical 
artefact dependent upon the wave slope and Froude number. 

The change in mean horizontal speed is given by 

(az + 2); c"(@H, kd) 
F(  1 + 2kd coth (kd))f ' 

= 1- u-c 
U. 

where c" is Clc,. 

wavelength, is 
The wavelength, non-dimensionalized by dividing by the linear infinite-depth 

(3.9) 
h (P2 + 2 )  coth ( k d )  -- 

2nF2D - F2(1+2kd coth (kd ) ) '  

Similarly, the change in mean surface level is 

fj(;kH, kd) kd coth (kd)  (F2 + 2 )  
-- )k , (3.10) F2D - F2D 1 + 2kd coth ( k d )  

where fj(&kH, kd) is defined as ( 1  + ki ] /kd) ,  the bar indicating that it has been averaged 
over one wavelength. 

The momentum flux was made non-dimensional by dividing by the momentum of 
a steady stream with horizontal velocity U and a depth equal to l / k o .  This gave 

(3.11) 

where AS is the difference between the upstream and downstream momentum flux. 
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Similarly the expressions for the difference in mean potential and kinetic energies 
become 

and 

A V  - (kr)2(F2+2)2COth2 (kd)-(l-F2kdcoth(kd))2 - _  
T* F4( 1 + 2kd coth (kd))2 

AT 2&kH, Icd) (1 + $F2)2 kd coth kd) 1 -_ _ -  - 
T* F4(kdcoth (kd)+a)2 F2 ’ 

(3.12) 

(3.13) 

where T* = iU2F2D. 
It can be shown that all these identities, representing changes from the upstream 

Aow due to the disturbance, reduce to zero in the limit that ikH+O. Equation (3.9) 
also reduces to (2.13). 

4. Results 
Equation (3.7) was solved numerically for kd,  given the waveheight and Froude 

number. It, was found that for Froude numbers greater than about 0.8 there were two 
solutions for a given wave slope, up to a maximum value of kH when the two 
solutions coalesce. After this value no solution appeared to exist. For a Froude 
number of 0.8 this maximum kH was found to be 0.2, while for a Froude number of 
0.9 it was 0.06. Physically, the two solutions correspond to  different waves with the 
same slope. The first is a wave of small waveheight, while the second is a wave of 
larger waveheight but smaller wavenumber. The latter solution is associated with the 
larger disturbance. 

Once the value of kd was found, the evaluation of the terms in Appendix A was 
straightforward. Convergence was found to be slow for many of the quantities when 
the Froude number was small. This was improved when analytic solutions were used 
based on an approximation for small Froude number, rather than on solving (3.7) 
numerically, These are derived in Appendix B and were used for Froude numbers less 
than 0.4. In contrast, convergence was faster than expected for Froude numbers near 
unity, despite the small parameter for shallow depths, kH/(kd)3, becoming singular 
as the Froude number tends to unity. One reason for this would be because kH can 
never be large in this region, as discussed above. 

The quantities defined in (3.8)-(3.13) were then plotted against changes in 
momentum flux. In  all case the quantities were non-dimensionalized by dividing by 
a depth-independent quantity. In this way a change in the depth, effected by a 
change in the Froude number for a given U and g, does not affect the normalizing 
scale. The same quantity can therefore be compared for various depths. The second- 
order solutions were plotted as dashed curves while the fourth-order solutions are 
continuous lines. In  the case when (3.7) had two solution branches, the solution of the 
first branch was initially used with increasing kH until the maximum wave slope was 
reached, after which the solution branch was changed and the value of kH was 
reduced. 

The waveheight for a given disturbance strength is shown in figure 2 .  This was 
found with the use of (3.9), for a given wave slope. The trend is that as F increases, 
implying a decrease in depth, the same disturbance strength will cause a wave of 
greater height. 

Figure 3 shows the increase in mean fluid velocity. Note that this is clearly non- 
zero. Again the effect is much greater for Froude numbers near unity where the 
curves are concave up, implying that each increment in disturbance strength causes 
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FIGURE 2. Waveheight versus reduction in momentum flux for various values of the Froude 
number. Second-order (- - -) and fourth order (-) results are shown. 

u-c 
U 

__ 

08 

FIGURE 3. Change in mean velocity versus reduction in momentum flux. 

an ever increasing change in the mean speed. The drop in mean surface height is 
shown in figure 4 and is nearly identical in form with the change in mean fluid 
velocity. Again convergence is quite acceptable, even for large Froude numbers. 

The effect of the disturbance strength on the wavelength is shown in figure 5.  For 
values of F less than 0.7 there is a decrease in the wavelength. For values of F greater 
than this the wavelength increases. Salvesen & von Kerczek (1978) found this critical 
value for Froude number to be 0.73, approximately. The discrepancy could a t  least 
partially be due to the Froude number defined by Salvesen & von Kerczek being 
defined in terms of the initial fluid velocity and depth, before the disturbance was 
generated. Also, it  is to be remembered that these results are based on those of De, 
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p- 
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FIGURE 4. Change in mean surface height versus reduction in momentum flux. 

0.002 0.004 0.006 0.008 
AS/S+ 

FIGURE 5. Change in wavelength versus reduction in momentum flux. 

which are in error a t  high orders. It is assumed that the upper bound in the wave 
slope is caused by this increase in the wavelength for Froude numbers near unity. It 
is also tempting to speculate that the reason for the wavelength increase is the 
increase in the mean fluid velocity and the decrease in mean depth, both of which 
would increase the wavelength. The changes in mean kinetic energy and mean 
potential energy are plotted in figures 6 and 7 .  

It is interesting to note that to  leading order all the graphed quantities, except for 
the waveheight, should have a linear relation with the disturbance strength. All 
curvature in the graphs is then attributable to higher-order effects. This implies that, 
especially for Froude numbers near unity, the higher orders tend to emphasize the 
existing trends. 
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FIGURE 6. Change in mean kinetic energy versus reduction in momentum flux. 
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T* 
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FIGURE 7. Change in mean potential energy versus reduction in momentum flux. 

5. Comparison with previous results 
The second-order results of the present method were compared with the results of 

Benjamin (1970) for the change in mean depth. The difference between (1.1) and the 
second-order truncated form of (3.10) was investigated. It was assumed that the 
difference is of the form (+kH)j, wherej was found by the same method as in $2. In 
all casesj converged to 4.00, implying that the two expressions agree to third order, 
for all Proude numbers. It does seem therefore that the present analysis supports the 
results of Benjamin concerning the decrease in mean depth. 

The results for the change in mean fluid velocity are in conflict with those of 
Doctors & Dagan (1980). It seems necessary to account for the inconsistency. 
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The formulation of the problem by Doctors & Dagan was essentially the same as 
that of the author’s, except that the upstream velocity was expanded in powers of 
the small parameter rather than the mean downstream velocity. The velocity 
potential $(z, y) was defined such that the local horizontal fluid velocity was given 
by 

u(z, Y)  = d2(x, y) - u. 
Hen:e, any change in the horizontal mean fluid velocity must be part of the solution 

The two surface boundary conditions, at the j t h  order of the solution, could be 
for $@, Y). 

reduced to a form similar to (2.11). That is, 

$jzz(x? Y) + k, $j& Y) = h,&) a t  Y = 0, (5.1) 

k, being defined here as g / U i ,  U,, being the zeroth-order term for U and hj(z)  
depending on lower-order terms. 

The set of equations was solved by assuming the solution to the jth-order velocity 
potential to take the form 

&x, y) = Re A,(k) cosh (k(y +D)) eiks dk , (5.2) 1 
where Re designates the real part of the integral. A,(k) could be found by substituting 
into (5.1) and with the use of the Fourier inversion theorem. 

This gave 

where 

- ( t , (k ,  z) + iij(k, x)) cosh ( k ( y + D ) )  dk 
k cosh (kD) q ( k )  

and q ( k )  = k-k,tanhkD. 

If it is assumed that 

J-cc I-m J - m  
m 

= ik I, hj(s) e-iks ds, 

then (5.3) reduces to the expression given by Doctors & Dagan. This is true only if 
Ihj(s)l decays to zero for large values of Is[. It can be shown that this will only occur 
f o r j  unity, owing to the non-decaying downstream wave. There is therefore a double 
pole a t  k = 0, for j  > 1, in the integrand of (5.3) which was neglected by Doctors & 
Dagan. Using complex residue theory, it can be shown that thisAhas the effect of 
adding an extra term, linear in x, to the downstream solution for $(x, y). This extra 
term is of the form 

($kH)j x lim (;,(k, z) + ii$(k, x)). 
(k,,D- 1) k+O 

With these corrections, the calculations of Doctors & Dagan were repeated, to second 
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order, for the far downstream case. This now revealed a change in the mean current, 
given by 

U-C ($W)2(l+:cosech2(kD))F2 =2- - 
u u -  2(1-F2) 

The subsequent expression for the change in the mean depth was found to be 
identical to (1.1). The three methods are not consistent to second order. 

6. Conclusion 
The present results confirm the second-order expression for the change in mean 

depth derived by Benjamin (1970), caused by reduction of the momentum flux. The 
corresponding expression derived by Doctors & Dagan (1980) has been shown to be 
in error. The cause of this error has been investigated and corrected, such that all 
three methods are now consistent. This implies that the finite-depth results for 
changes of wavelength with disturbance strength, obtained by Salvesen & von 
Kerczek (1978), should also be correct to second order. Indeed, the present analysis 
shows qualitative agreement. 

Another result that emerges from this analysis is that for Froude numbers above 
0.7, linear analysis is quite lacking. The change in mean fluid velocity and subsequent 
drop in mean surface height cannot be disregarded in any analysis of a disturbance 
in a fluid of moderate or small depth. 

The convergence of the expansions is better than expected for Froude numbers 
near unity. This is mainly because the wave slope is bounded from above in this 
region an in fact decreases with increasing disturbance strength after this upper 
bound is reached. 

For small Froude numbers little extra information was gained from the fourth- 
order corrections but again, for larger Froude numbers, all derived quantities grew 
a t  an increasing rate with the disturbance strength, greater than the second-order 
theory predicted. Thus, these higher-order terms seem to emphasize, rather than 
moderate, the existing trends from lower orders. 

I wish to thank J. D. Fenton for his effort, guidance and assistance in this 
work. This paper was revised a t  the University of Adelaide, South Australia, with 
support from the Australian Research Council. 

Appendix A. Fourth-order solution to perturbation expansion in wave 
slope; ($kH) 

Note that s and c are defined such that ;  

s = sinh kd. c = cosh kd 

Mean surface height k(d + ?j) 
0th order : kd; 

1st order: 0; 

c(8s4+ 12s2+9) 
8pC2+i)s3 ' 2nd order: - 

3rd order: 0;  

4th order : - c(4s2 + 3) (256s12 + 1792s'O + 4 2 2 4 ~ ~  + 2304ss - 3348s4 
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Mean Jluid velocity c / c o  

0th order: 1;  

1st order: 0 ;  

(8s6 + 16s4 + 15s' + 9) 
8(2c2+1)s4  ' 

2nd order : 

3rd order: 0;  

4th order: 
( 5 1 2 ~ ' ~  + 6 1 4 4 ~ ' ~  + 26 752s'' + 50 880s'O + 36 360ss 

- 14 4 7 2 ~ ~  - 38 5 5 6 ~ ~  - 2 1 141 8' - 3645)/ (5 12s10(2s2 + 3)3). 

Fourth-order integral quantities 

Dimensionless mass Jlux Q / c ,  d 

0th order in 4kH : 

1st order: 0; 

2nd order : 

3rd order: 0 ;  

4th order : 

- 1 ; 

44s' + 3)' 8s6 + 16s4 + 15s' + 9 ,  
8s4 ( 2s2 + 3) ' 8kds3( 29' + 3) - 

~ ( 4 s '  + 3) (256s'' + 1408s' + 2880s' + 7 2 0 ~ ~  - 3 9 9 6 ~ ~  

-4212~'- 1225)/(5121cd~~(2~'+3)~)  

- ( 5 1 2 ~ ' ~  + 6144~'~+26752~' '+50880~'~+36360~~-  1 4 4 7 2 ~ ~  

- 38 5 5 6 ~ ~  - 21 1 4 1 ~ ~  - 3645)/(512s10(2s2 + 3)3). 

Dimensionless momentum Jlux S/ci d 

ckd 
0th order: -+ 1.  

2s ' 

1st order: 0 ;  

(s2 + 1) (8s4 + 12s2+ 9) - c(20s4 + 30s2+ 9). 
8s4(2s2 + 3) 8kds3(2s2 + 3) ' 

2nd order: 

3rd order: 0 ;  

4th order: 
c ' ( ~ s ~  + 3) ( 2 5 6 ~ ' ~  + 1792s" + 4224s' + 2 3 0 4 ~ ~  - 3348s4 

-42129' - 1 2 1 5 ) / ( 5 1 2 ~ ~ ~ ( 2 ~ ~  + 3)3) 

-44s' + 3)' (64s" + 256s' + 3 6 0 ~ ~  - 2 8 8 ~ ~  

- 8 6 4 ~ ~  -405)/(512kds9(2s2 + 3)3). 
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Dimensionless mean kinetic energy T/c: d 
0th order: 5 ;  
1st order: 0;  

2nd order: - 

3rd order: 0;  

4th order: 

8s6 + 16s4 + 15s2 + 9 
8s4(2s2 + 3) 

c(4s2 + 3)2 
16kds3(2s2 + 3) ' 

(4s' + 3) ( 2 5 6 ~ ~ ~  + 2048s'' + 6 9 1 2 ~ ~ ~  + 10 2722 + 42849 

- 4 7 5 2 ~ ~  -5103~'- 1215) / (512~~~(2~'  + 3)3) 

-c(4s2+3) ( 7 6 8 t ~ ~ ~ + 3 5 8 4 ~ ~ ~ + 6 7 2 0 ~ ~ + 4 6 0 8 ~ ' -  1 6 2 0 ~ ~  

-3564~'- 1215)/(1024kdss(2s2+ 3)3). 

Dimensionless potential energy V/ci  d 

cEd 
0th order : --. 

2s ' 

1st order: 0;  

c .  2nd order: ~ 

4kds ' 

3rd order: 0 ;  

3c(4s2 + 3) (8s4 + 16s' + 9) 
4th order: - 

128Eds5(2s2 + 3)2 ' 

Appendix B. Evaluation of flow characteristics for small Froude numbers 
It is possible for simple analytic expressions to  be found for the quantities defined 

in $3, a t  low Froude numbers, as these solutions can be greatly simplified by the 
approximation that tanh Ed is unity. 

First, a value for kd is needed in terms of F and SkH. This is found by assuming 
the form 

Ed = A +B($EH) + C(+ICH)~ +D(&H)3 +E(SkH)4 + . . . 
and substituting into the low-Froude number approximation of (3.7). After 
expanding in BkH this gave 

1 (1 - 2F2) (2 +F2) 
kD = -+ (ikH)' 

F' 2F2( 1 -F2) 
( 1 - 2172) (2 + P) (2 + 2172 - ~ 4 )  + (5kH)4 +... . (1) 

8F2( 1 - F2)3 

All other quantities can then be evaluated for a given wave slope. 
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From (3.8)-(3.13) : 

F2(8  - 22F2 + 1 l F 4 )  
+ ($kH)4  +..., u-c F2 

- - ( $ c H ) ~  -- 
U 2 ( 1 - F 2 )  8( 1 -F2)3  

(1 - 2F*) ( 1 - 2 F 2 ) ( 2 - 1 4 F 2 + 9 F 4 )  + ( $ ~ G H ) ~  +..., 

- ( 3 9 3 4  +..., 

-- - 1 - ($kH)* 
h 

2nF2D ( 1 - F 2 )  4( 1 - P 2 ) 3  

(8-23F2+ 12F4) F2 k F2 
2 ( 1 - F 2 )  8( 1 - I 7 7 3  

( $ I ~ H ) ~  + ... , 

+ ($kH)4 +..., 

+ ( $ ~ c H ) ~  + ... . 

= ($W2 

A 8  (BIGH)~ 7 - 12F2 
S” 6 12(1-F2) 

A V  (!$H)’ (1  - 2F2) (5  - 6F2) 
T* 2 4( 1 -F2)2  

_ _ -  

- - - -- 

(+kH)2 (8  - 22F2 + 1 l F 4 )  -- -- AT 
T* 2 ( 1 - F 2 )  8( 1 -F2)3  

and 

It can be seen that both the change in mean depth and mean fluid velocity behave 
as F2,  for small F .  This implies that  these quantities decrease as 1/D, for large depths. 
When F equals zero the above expression for wavelength, truncated to second order, 
reduces to (1 .3) .  
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